The lambda calculation determines the ratio between the amount of oxygen actually present in a combustion chamber vs. the amount that should have been present to obtain perfect combustion.
Let’s learn more about this remarkable tool, beginning with lambda’s meaning. Lambda represents the ratio of the amount of oxygen actually present in a combustion chamber compared to the amount that should have been present in order to obtain “perfect” combustion. Thus, when a mixture contains exactly the amount of oxygen required to burn the amount of fuel present, the ratio will be one to one (Ll) and lambda will equal 1.00. If the mixture contains too much oxygen for the amount of fuel (a lean mixture), lambda will be greater than 1.00. If a mixture contains too little oxygen for the amount of fuel (a rich mixture), lambda will be less than 1.00.
Here’s the magic: Lambda is completely unchanged by combustion. Even complete combustion or a total lack of combustion has no effect on lambda! This means we can take our exhaust gas samples at any point in the exhaust stream without having to worry about the effects of the catalytic converter.